
SUPPLEMENT 1:  

DIRECT GENERATION OF ARBITRARY COMPLEX FIELDS FROM A RING LASER 

RESONATOR 

In this supplement, we present an in-depth exposition of the optimization algorithm employed 

for calculating the cascaded phase holograms, 𝜙1 and 𝜙2, along with the detailed technical 

aspects of the experimentally constructed ring laser resonator. We first illustrate the concept of 

intra-cavity cascaded modulation method. Subsequently, we introduce an optimization 

algorithm based on a gradient-descent technique. In the algorithm's design, we discuss the 

determination of the positive factors 𝛼1  and 𝛼2  associated with the power efficiency of the 

zeroth-order and first-order beam generation. Finally, we outline the pump configuration of the 

ring resonant cavity and report on its performance metrics. 

1. Concept of the intra-cavity cascaded modulation method 

The beam propagation of the self-reproducing field,  f
0
, and the output field,  f

out
, within the 

ring laser resonator is illustrated in Fig. S1. The self-reproducing Gaussian field,  f
0
(x0, y

0
), 

oscillating within the cavity, propagates a distance L1  to become f
1
(x1, y

1
). It subsequently 

encounters a phase-only Spatial Light Modulator (SLM) loaded with cascaded phase holograms, 

𝜙1  and 𝜙2 , distanced by L2 . These holograms impart phase functions exp(i𝜙1(x1, y
1
))  and 

exp(i𝜙2(x2, y
2
)), respectively. The modulated field, f

2
(x2, y

2
)exp(i𝜙2(x2, y

2
)), is then Fourier 

transformed by a lens into F(xF, y
F
) in the Fourier plane. Here, the notation (xi, yi) with i =

0, 1, 2, F denotes the transverse coordinates at each respective plane. The transformed field 

F(xF, y
F
)  mainly comprises two diffraction orders. In the case of self-reproduction beam 

propagation as depicted in Fig. S1(a), the transformed field F0 is identical to the initial field f
0
. 

This ensures that the intra-cavity field must reproduce itself after a round-trip in the ring laser 

resonator. In the case of the output beam propagation depicted in Fig. S1(b), the desired output 

field F1 with controllable amplitude and phase is reconstructed at the first order in the Fourier 

plane. 

 

Fig. S1. Schematic diagram of the beam propagation within the laser resonator. 



The notations 𝒯L1
, 𝒯L2

 and 𝒯f are adopted to represent the transfer functions of free-space 

propagation and Fourier transform by a lens respectively. For example, under paraxial 

approximation, the field f
1
(x1, y

1
) and F0(xF, y

F
) can be written as: 
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With the notations 𝒯L1
 and 𝒯f, Eq. S1 can be simplified as: 
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Thus, the beam propagation as shown in Figure S1(a) can be expressed as: 
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Similarly, the beam propagation in Figure S1(b) can be written as: 
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Here, kx2γS denotes a phase shift introduced to spatially separate the output field F1(xF, y
F
) 

from the self-reproduction field F0(xF, y
F
)  in the Fourier plane, thereby allowing distinct 

extraction of the desired output. 

The accuracy of the transformed complex field is quantified by the normalized fidelity Fid, 

which can be calculated from the overlap integral between the target field and the transformed 

field. For example, the fidelity for the generation of F1 can be expressed as: 
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where (x, y) are the coordinates in the region of interest, f
T

 denotes the target output field 

determined as needed and the superscript (∙)∗ represents the complex conjugate. Also, for the 

generation of F1, the energy efficiency is calculated by comparing the power in the transformed 

field to the initial field by using: 
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Here the power of the initial field f
0
 is normalized to 1 as ∬|f

0
(x, y)|

2
dxdy = 1. 

2. Optimization strategy 



The algorithm is based on a gradient-descent optimization strategy that minimizes a customized 

cost function [1]. The cost function is chosen as follows: 
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Here, 𝜙 symbolizes the phase holograms, having dimensions of M × N × 2, where M and N r 

denote the pixel counts along the x- and y- axis. F0(𝜙) and F1(𝜙) represent the complex fields 

calculated based on the phase 𝜙 according to Eq. S3 and Eq. S4. The powers of both the initial 

and target fields are normalized to unity as ∬|f
0
(x, y)|

2
dxdy = 1 and ∬|f

T
(x, y)|

2
dxdy = 1, 

ensuring their intensities are properly scaled. The parameters 𝛼1 and 𝛼2 are power efficiency 

factors satisfying the relationship of 𝛼1
2 + 𝛼2

2 = 1 such that the combined theoretical power 

efficiency of F0(𝜙) and F1(𝜙) equals 100%. 

The objective of the optimization is to determine the phase hologram 𝜙opt that minimizes 

L(𝜙), which can be concluded by: 

 opt arg min ( ).L


 =  (S8) 

The optimization problem posed by Eq. S8 is inherently non-convex, and the cost function 

L(𝜙)  possesses a well-defined gradient. Given this, the problem can be approached via a 

gradient-descent optimization algorithm. The gradient is computed for each layer of the phase 

holograms, specifically 𝜙j, j = 1, 2. In the j-th plane, the cost function L(𝜙) can be represented 

in matrix form as: 
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where Sj
in(𝜙j) ≜ (𝚨j

inf
0
exp(i𝜙j) − 𝛼1f0)  and Sj

out(𝜙j) ≜ (𝚨j
outf

0
exp(𝑖𝜙j) − 𝛼2fT)  represents 

the difference between the transformed field and the target field. 𝚨j
in and 𝚨j

out is the transform 

matrix with size M × N × j which stands for the linear operation from the initial field f
0
 to the 

current field f
j
, satisfying the relation of 𝚨j

inf
0

= 𝑓j
𝑖𝑛 and 𝚨j

outf
0

= 𝑓j
𝑜𝑢𝑡. The quadratic term in 

Eq. S9 can be expanded as: 
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where (∙)H denotes the Hermitian operator. Referring to Ref. [1], the partial derivative 𝜕L(𝜙j) 

concerning the phase 𝜙j is given by: 
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where Re(∙) represents taking the real part. Thus, the gradient is calculated as: 
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By inserting Sj
in(𝜙j) ≜ (𝚨j

inf
0
exp(i𝜙j) − 𝛼1f0) and Sj

out(𝜙j) ≜ (𝚨j
outf

0
exp(𝑖𝜙j) − 𝛼2fT) into 

Eq. S11, the gradient can now be expressed as: 
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where Sj
in(𝜙j)

H
 and Sj

out(𝜙j)
H

 is recursively calculated by backpropagation as: 
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Relying on Eq. S13 and Eq. S14, a quasi-Newton gradient descent algorithm is employed 

for the optimization purpose. This method is known for its rapid convergence and reduced 

computational memory demands [2]. Firstly, the cost function L(𝜙) is determined according to 

the parameters of the ring laser resonator and desired fields. Then the corresponding gradient 

∇𝜙L is calculated. To facilitate this optimization, the MATLAB function fmincon(∙) is utilized, 

chosen for its ease of implementation and computational efficiency. 

3. Determination of the power factor  

The generation of the output HG22 field is presented as an example for illustration of the trade-

off between the power efficiency of two beam propagation processes. The transformation 

efficiency 𝛼1
2 of the self-reproduction Gaussian field is designed as 𝛼1

2 ≥ 80% to overcome the 

inherent losses in the laser cavity to achieve oscillation. The efficiency of the transformation 

from the Gaussian field to the desired field is defined as 𝛼2
2 = 1 − 𝛼1

2, thus satisfying energy 

conservation of 100%. 

 

Fig. S2. Impact of the power factor 𝛼1 on the fidelity and efficiency of the beam propagation. 

(a) Intra-cavity self-reproduction TEM00 field. (b) Extra-cavity output HG22 field. 

The simulation outcomes are illustrated in Fig. S2, demonstrating that the efficiency of the 

extra-cavity HG22 field output decreases in tandem with the rise in the efficiency of the intra-

cavity self-reproduction TEM00 field. To guarantee an intra-cavity mode conversion efficiency 

meeting the criterion 𝛼1
2 ≥ 80%, 𝛼1 should be set as high as 0.90. Note that the total efficiency 

would be less than 100% after optimization. The main reason is that part of the energy is 

redistributed to other diffraction orders other than the desired +1 diffraction order. Nonetheless, 

the optimization algorithm is instrumental in securing a sufficiently high intra-cavity mode 

conversion efficiency to surmount inherent cavity losses and sustain oscillation. 



4. Pump scheme and performance metrics of the ring laser system 

In our study, it is assumed that the gain distribution within the Nd:YAG active medium is 

uniform. The Nd:YAG crystal utilized in our experiments originates from a commercial module, 

the layout of which is depicted in Fig. S3(a). Here, the Nd:YAG rod is enveloped by five arrays 

of laser diode bars, each operating at a central wavelength of 808 nm, ensuring homogeneous 

pumping as illustrated in Fig. S3(b). This pumping configuration guarantees a high degree of 

gain uniformity. Considering the thermal effects inherent to Nd:YAG, our approach employs 

quasi-continuous pumping instead of continuous pumping, complemented by water cooling, to 

mitigate heat accumulation. Operated at a pump voltage of 18V and current of 22A with a duty 

cycle of 10%, the average pump power approximates 39.6W, under which conditions thermal 

effects in the Nd:YAG can be neglected. 

 

Fig. S3 (a) Schematic illustration of the Nd:YAG module; (b) Diagram of the pumping 

arrangement. 

Output power serves as a crucial indicator of the resonator's operational efficiency. In the 

ring cavity designed for this work, taking the HG11 mode as an illustrative case, the relationship 

between the output power and pump power is depicted in Figure S4. Under conditions of a 

pump voltage of 18 V, a pump current of 22 A, and a duty cycle of 10%, the average output 

power reaches 118mW. Moreover, the curve reveals a pump threshold of approximately 32.6 

W and a slope efficiency of about 1.71%. The principal reason for the relatively low slope 

efficiency lies in the necessity to ensure effective oscillation of the fundamental mode within 

the cavity; thus, the power conversion factor 𝛼2
2 , representing the transformation from the 

fundamental mode to the output mode, is set below 20%, leading to a reduced output power. 

 

Fig. S4 Performance curve of the ring laser in generating the HG11 mode 
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